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G E N E T I C S

Genomic characterization of normal and aberrant 
human milk production
Yarden Golan1*, Sarah K. Nyquist2, Zhe Liu3,4, Dena Ennis5, Jingjing Zhao3,4, Emily Blair6,  
Abdur Rahim Khan7, Mary Prahl6,8, Stephanie L. Gaw9,10, Moran Yassour5,11,  
Barbara E. Engelhardt2,12, Valerie J. Flaherman6, Nadav Ahituv3,4

Breastfeeding is essential for reducing infant morbidity and mortality, yet exclusive breastfeeding rates remain 
low, often because of insufficient milk production. The molecular causes of low milk production are not well un-
derstood. Fresh milk samples from 30 lactating individuals, classified by milk production levels across postpartum 
stages, were analyzed using genomic and microbiome techniques. Bulk RNA sequencing of milk fat globules 
(MFGs), milk cells, and breast tissue revealed that MFG-derived RNA closely mirrors luminal milk cells. Transcrip-
tomic and single-cell RNA analyses identified changes in gene expression and cellular composition, highlighting 
key genes (GLP1R, PLIN4, and KLF10) and cell-type differences between low and high producers. Infant microbi-
ome diversity was influenced by feeding type but not maternal milk production. This study provides a compre-
hensive human milk transcriptomic catalog and highlights that MFG could serve as a useful biomarker for milk 
transcriptome analysis, offering insights into the genetic factors influencing milk production.

INTRODUCTION
Breastfeeding is associated with reduced risk for morbidity and 
mortality for the infant early and later in life (1). The World Health 
Organization recommends exclusively breastfeeding for the first 
6 months of life, and a continuation of breastfeeding for up to 2 years 
or longer with the introduction of complimentary foods (2). How-
ever, the rates and duration of exclusive breastfeeding are low, with 
48% of infants worldwide (3) and 24% of infants in the United States 
(4) being exclusively breastfed at 6 months of age. One of the main 
reasons for early weaning, reported by approximately 35% of indi-
viduals who wean their infants earlier than recommended, is per-
ceived insufficient milk supply (PIMS) (5). In some cases, early 
intervention and support for the mother can improve milk produc-
tion and help to continue breastfeeding (6). However, little is known 
about the molecular mechanism leading to PIMS and about the mo-
lecular changes in the mammary gland in cases of perceived or mea-
sured low milk production. This gap in knowledge leads to very 
limited treatment options in these cases (7,  8). Previous studies 
found an association between maternal obesity and low milk pro-
duction (9,  10). Overweight and obese women were less likely to 
initiate and maintain breastfeeding and more likely to report that 
their infant is not satisfied with breast milk alone, in comparison to 

women with normal weight (11, 12). In addition, high levels of sys-
temic tumor necrosis factor–α (TNF-α) and inflammation were 
suggested to be associated with low milk production in obesity 
(13, 14), as well as insulin dysregulation (15). Nevertheless, PIMS 
and low milk production is also common among women who are 
not overweight (5,  16). Larger and controlled clinical studies are 
needed to better understand these relationships and to examine im-
proved intervention protocols.

On the opposite end of the milk production spectrum, some 
women suffer from over production (hyperlactation) that may be 
idiopathic or may be caused by over pumping or use of galacta-
gogues (i.e., substances thought to increase the rate of human milk 
synthesis but are not approved by the Food and Drug Adminis-
tration) (17). Hyperlactation is also at risk for early weaning be-
cause of higher frequencies of breast pain, plugged ducts, and 
mastitis (17). Global characterization of the cellular signaling, genes, 
regulatory elements, and pathways associated with low or high 
milk production may help to better diagnose, treat, and support 
these individuals.

Genetic studies on human breastfeeding complications are sparse 
in part because these conditions are not well documented in medical 
records, and we lack a gold standard method to diagnose hypo or 
hyperlactation. Almost all genome-wide association studies on milk 
yield have been performed in cows and other dairy animals, finding 
associations between single-nucleotide polymorphisms (SNPs) and 
milk production traits (18). One example is an SNP associated with 
the gene DGAT1, a key enzyme that catalyzes the final step of triglyc-
eride synthesis in mammary gland cells, and is associated with milk 
yield and fat and lactose production traits (19–23). To date, only one 
human study has been published showing a single genetic variant 
associated with milk production and breastfeeding duration (24). In 
this candidate gene study, a single SNP in the milk fat globule (MFG) 
epidermal growth factor and factor V/VIII domain containing gene 
(MFGE8) was found to be associated with PIMS, breastfeeding ex-
clusivity, and duration. In addition, there are a few studies on the 
relationship between human maternal genetics and milk composi-
tion, which have focused on human milk oligosaccharides, zinc 
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transport, and fatty acids (25–31). While these studies have not test-
ed for associations with milk production, they nevertheless provide 
support for the role of various genes in the milk production process 
to develop more effective diagnostics and interventions. Moreover, 
one previous study on milk gene expression found higher expression 
of the TARDBP gene in exclusive breastfeeding individuals com-
pared to those supplemented with formula 3 to 5 days postpartum, 
often an indication of issues with milk production (32). Together, 
these studies suggest that human milk production or milk yield 
might also be regulated at the gene expression level.

Recent work used functional genomics tools to characterize the 
human milk transcriptome (33–35) and have found that MFGs can 
serve as an information-rich, noninvasive biospecimen for learn-
ing about mammary gland function (33–37). MFG contains high 
amounts of RNA that is easy to extract compared to the relatively 
low amount of RNA extracted from milk cells, and it does not re-
quire sorting for specific cell populations as they are secreted from 
epithelial cells (38, 39). During this process, MFGs are coated by the 
epithelial cell membrane, and some of the cell’s cytosol is secreted 
into the milk in the crescent structure between the MFG membrane 
and the cell membrane (40). However, to date, no direct comparison 
between MFG RNA and human milk cells was published, and it is 
unclear whether specific RNA is targeted to be secreted in these 
compartments. In addition, we and others used single-cell RNA se-
quencing (scRNA-seq) to characterize various milk cell type popu-
lations, at different breastfeeding time points, finding two to six 
different lactocyte cell type populations (41–46) and cross-talk be-
tween these cell types and immune cells (44). The two main epithe-
lial cell subtypes that are found in milk are referred to as luminal 
cells 1 and 2 (LC1s and LC2s) (42–45). It is unclear whether these 
epithelial subtypes play different roles in milk production or MFG 
secretion. A better understanding of the MFG transcriptome and 
the cells that produce them could dramatically enhance studies that 
use these accessible milk fractions as a proxy biomarker to under-
stand the mammary gland function during lactation.

Here, we used RNA-seq and scRNA-seq to better understand the 
human milk transcriptome under normal and aberrant milk pro-
duction conditions. We show that the MFG transcriptome resembles 
milk luminal cells with more similarity to the LC2 cells compared to 
LC1 cells and can be used as a milk biomarker studying the function 
of the mammary gland luminal cells during lactation. We also pro-
vide an important database of genes that are up-regulated during 
lactation compared to nonlactating breast tissue. Using samples 
from individuals that differ in their milk production, stratified into 
low, normal, and high production groups, we identify changes in the 
cellular transcriptome and milk cell type composition between these 
groups. In addition, we tested whether maternal low milk produc-
tion affects the infant microbiome and whether infant formula sup-
plementation, which occurs more frequently in infants nursing from 
mothers with low milk production, affects the infant microbiome. 
Together, our findings shed light on molecular and cellular changes 
under different levels of milk production.

RESULTS
Collection of human milk samples with differences in 
milk production
To identify the molecular factors associated with milk production, 
we collected fresh milk samples from 30 lactating individuals during 

various lactation stages (Fig. 1A). Participants included 9 individu-
als with low milk production 7 individuals with high milk produc-
tion, all referred by lactation consultants after a breast exam and 
infant latching examination (further details in table S1), and 14 in-
dividuals who self-reported normal milk production [recruited 
from social media and distributed flyers at University of California, 
San Francisco (UCSF) clinics]. In addition to breastfeeding consul-
tants’ categorization (table S1), mothers also reported perception of 
their milk production, which differed across the study groups (χ2 
P ≤ 0.001; Table 1). One mother who self-reported low milk pro-
duction but was categorized by the lactation consultant as a normal 
supplier was excluded from further analysis. Furthermore, we as-
sessed maternal reports about their infants’ satisfaction with the 
amount of breast milk the infants received (“Is the infant satisfied 
with mother’s own milk?”); we found this measure to also differ 
across the study milk-production groups (χ2 P  ≤  0.001;  Table  1). 
Mothers with low milk production were more likely to supplement 
their infant’s diet with baby formula or donor milk; seven of the nine 
mothers supplemented with infant formula in the first 8 days post-
partum (Fig. 1; additional information on formula supplementation 
and lactation consultant summary for each participant in table S1). 
Using data collected at enrollment, we found that individuals with 
normal milk production tended to report that they were breastfed as 
an infant, compared to the low and high groups that report less-
frequently that they were breastfed as infants [analysis of variance 
(ANOVA), P ≤ 0.042; Table 1]. In addition, there was a trend of self-
report of delay in the day they felt that the milk “came in” (corre-
sponding to lactogenesis II/secretory activation) in the low production 
group (ANOVA, P ≤ 0.072; Table 1), which was previously shown 
to be associated with unintended breastfeeding reduction and ces-
sation (47). There was no statistically significant difference in ma-
ternal body mass index (BMI) between the groups in our cohort 
(ANOVA, P > 0.1; Table 1). Participants with low, normal, and high 
milk production showed relevant differences between perceived 
milk production but no difference in other known risk factors for 
low milk production, including maternal age, and delivery mode 
(Table 1). Each individual contributed a mean of 2 ± 1.6 samples to 
the study.

The MFG RNA signature recapitulates the 
lactocyte transcriptome
MFG RNA is readily accessible and contains high amounts of RNA 
compared to the cell pellet in each milk sample. However, the origin 
of this RNA and direct comparison to milk cells RNA from the same 
samples was never performed, leaving a gap in knowledge about the 
usability of MFG RNA as a biomarker for the different cell types in 
the mammary gland. To address this, bulk RNA-seq was performed 
on a subset of four paired human milk cells and MFG samples ob-
tained from the same milk sample of three individuals (days 139 to 
481 postpartum), followed by transcriptomic comparisons (sample 
information in Table 2). We found 1696 genes to be differentially 
expressed (DE) between the milk cells and MFG; of those, 1454 
genes showed higher expression in human milk cells and only 242 
genes showed higher expression in MFG (Fig.  2A). We next per-
formed gene ontology (GO) enrichment analysis using clusterPro-
filer [adjusted P values calculated using Benjamini-Hochberg (BH) 
correction (48)]. We found that genes with higher expression in 
milk cells are associated with GO terms related to leukocyte and 
lymphocyte differentiation and cytokines, capturing the presence 
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versus absence of immune cells in milk cells versus the MFG frac-
tion, respectively (Fig. 2B). For the genes with higher expression in 
MFG, we observed no significant GO enrichment. The overex-
pressed genes in the MFG fraction overlapped several GO term lists 
(adjusted P values >0.05) including positive regulation of lipid lo-
calization, the regulation of fatty acid transport, and the acetyl–
coenzyme A metabolic process (Fig. 2C). This analysis showed that 
most of the MFG transcriptome is also present in the milk cells frac-
tion. In contrast, if one is interested in immune function during lac-
tation, the cell pellet should be used, not MFG RNA.

MFGs, secreted from mature and active milk-producing cells, 
primarily contain milk protein–related transcripts (33). To better 
understand aberrant lactation, our first goal was to identify genes 
and pathways up-regulated during normal lactation. We compared 
MFG and milk cell transcriptomes to the nonlactating mammary 
gland transcriptome to determine whether similar pathways are up-
regulated in both, providing insight into the representativeness of 
MFG RNA as a model for the milk-producing cells’ transcriptome. 
For this analysis, we compared publicly available bulk RNA-seq data 

from nonlactational breast tissue (49) to bulk RNA-seq from milk 
cells and MFG in our samples. We identified 11,810 DE genes be-
tween nonlactational breast tissue and milk cell or MFG fractions 
(table S2). Comparing the milk cell transcriptome to nonlactational 
breast tissue, we found 3462 genes to be highly expressed in milk 
cells, many of them known to be related to milk production (includ-
ing the casein family genes), and 5796 genes highly expressed in 
nonlactational breast tissue compared to milk cells (Fig. 2D and ta-
ble S2). The genes up-regulated in milk cells were enriched for path-
ways associated with myeloid leukocyte activation (BH-adjusted 
P  ≤  9.8 × 10−11) and positive regulation of cytokine production 
(BH-adjusted P ≤ 1.3 × 10−09), as well as regulation of protein trans-
port (BH-adjusted P ≤ 1.4 × 10−07) capturing the higher activity of 
immune cells during lactation than in nonlactational breast tissue 
(Fig. 2E and table S2) (50). The up-regulated pathways in the MFG 
transcriptome compared to the breast tissue transcriptome were as-
sociated with cytoplasmic translation (BH-adjusted P ≤ 5.3 × 10−07), 
small molecule catabolic processes (BH-adjusted P ≤ 1.1 × 10−06), and 
fatty acids metabolic process (BH-adjusted P ≤ 1.4 × 10−06), which are 
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Fig. 1. Samples and milk fractions used in this study. (A) Graph showing the samples used in the study, their categorization into milk production groups, lactation 
stage, and infant feeding type (BF, breastfeeding) at the time of sample collection. (B) Schematic showing the milk fraction observed after centrifugation of fresh milk 
samples, MFG at the top and milk cells at the bottom and the experiments carried out on them.
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Table 1. Study participants’ characteristics. ns, not significant; *P < 0.1; **P < 0.05; ***P < 0.01.

Category Overall Low Normal High P value Test

﻿n﻿ 30 9 14 7 ﻿ ﻿

﻿Age (years) 
[mean (SD)]﻿

35.85 (3.26) 36.45 (3.15) 35.93 (3.08) 34.93 (4.00) ns ANOVA

﻿Ethnic group (%)﻿ ﻿ ﻿ ﻿ ﻿ ns χ2

﻿White﻿ 20 (66.7) 7 (77.8) 9 (64.3) 4 (57.1) ﻿ ﻿

﻿Asian Indian﻿ 1 (3.3) 0 (0.0) 1 (7.1) 0 (0.0) ﻿ ﻿

﻿Chinese﻿ 3 (10.0) 1 (11.1) 1 (7.1) 1 (14.3) ﻿ ﻿

﻿Hispanic﻿ 2 (6.7) 0 (0.0) 1 (7.1) 1 (14.3) ﻿ ﻿

﻿Other﻿ 3 (10.0) 1 (11.1) 1 (7.1) 1 (14.3) ﻿    

﻿Did not answer﻿ 1 (3.3) 0 (0.0) 1 (7.1) 0 (0.0) ﻿ ﻿

﻿BMI [mean (SD)]﻿ 24.37 (4.06) 26.58 (4.02) 22.94 (2.51) 24.40 (5.97) ns ANOVA

﻿Number of 
pregnancies 
[mean (SD)]﻿

2.22 (1.00) 2.00 (1.07) 2.00 (0.71) 2.83 (1.17) ns ANOVA

﻿Number of live birth 
[mean (SD)]﻿

1.50 (0.58) 1.12 (0.35) 1.57 (0.65) 1.83 (0.41) * ANOVA

﻿Age at first 
pregnancy 
[mean (SD)]  

33.48 (2.74) 34.75 (1.91) 33.44 (2.40) 31.83 (3.60) ns ANOVA

﻿Breastfeeding 
experience (%)  

﻿ ﻿ ﻿ ﻿ ns χ2

﻿Do not have other 
kids﻿

13 (44.8) 7 (77.8) 7 (50.0) 1 (16.7) ﻿ ﻿

﻿Breastfed 1 child 
before﻿

1 (3.4) 2 (22.2) 6 (42.9) 5 (83.3) ﻿ ﻿

﻿Breastfed 2 children 
before﻿

15 (51.7) 0 (0.0) 1 (7.1) 0 (0.0) ﻿ ﻿

﻿Weight before 
pregnancy 
(kilograms) 
[mean (SD)]  

63.74 (12.07) 69.92 (14.72) 60.71 (7.62) 61.86 (14.39) ns ANOVA

﻿Breastfed as a 
child = Yes (%)  

21 (72.4) 5 (55.6) 13 (92.9) 3 (50.0) ** χ2

﻿Age of first menstrual 
[mean (SD)]﻿

13.09 (1.38) 13.50 (1.60) 13.00 (1.00) 12.67 (1.63) ns ANOVA

﻿Baby gender = Male 
(%)﻿

17 (58.6) 5 (62.5) 8 (57.1) 4 (57.1) ns χ2

﻿Gestational age 
at delivery 
[mean (SD)]  

39.10 (1.27) 39.33 (1.41) 39.29 (1.27) 38.43 (0.98) ns ANOVA

﻿Mode of delivery (%)﻿ ﻿ ﻿ ﻿ ﻿ ns χ2

﻿Vaginal﻿ 27 (90.0) 8 (88.9) 14 (100.0) 5 (71.4) ﻿ ﻿

﻿C- section after failed 
trail of labor﻿

2 (6.7) 1 (11.1) 0 (0.0) 1 (14.3) ﻿ ﻿

﻿Intended C- section﻿ 1 (3.3) 0 (0.0) 0 (0.0) 1 (14.3) ﻿ ﻿

﻿Day postpartum that 
milk came in 
(Lactogenesis stage 
II) [mean (SD)]  

3.45 (1.75) 4.62 (2.26) 3.04 (1.48) 2.86 (0.90) * ANOVA

﻿First try 
breastfeeding (%)  

﻿ ﻿ ﻿ ﻿ ns χ2

﻿Immediately﻿ 14 (46.7) 2 (22.2) 7 (50.0) 5 (71.4) ﻿ ﻿

﻿<30 min﻿ 9 (30.0) 4 (44.4) 4 (28.6) 1 (14.3) ﻿ ﻿

﻿30 min–1 hour after 
birth﻿

4 (13.3) 2 (22.2) 1 (7.1) 1 (14.3) ﻿ ﻿

(Continued)
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all activated during lactation (Fig. 2F and table S2). Comparing the 
MFG transcriptome to nonlactational breast tissue, we found 2935 
genes to be highly expressed in MFG and 6122 genes highly ex-
pressed in nonlactational breast tissue compared to MFG (Fig. 2G 
and table S2). Moreover, we found a large overlap in DE genes [DE-
Seq2 (51) adjusted P ≤ 0.05] between milk cells and MFG compared 
to nonlactational breast tissue, including known milk production 
genes such as CEL, OLAH, SPP1, and CSN3, with 2148 jointly up-
regulated in milk cells and MFG, and 4177 genes jointly down-
regulated versus nonlactational breast tissue (Fig. 2H and table S2). 
In summary, our results show that the MFG transcriptome closely 
resembles milk cells and may be used as an accessible and homoge-
nous proxy marker to analyze epithelial cell gene expression during 
lactation. This analysis also provides an important database for 
genes that are up-regulating during lactation and can facilitate fu-
ture studies focusing on lactation specific pathways.

The MFG transcriptome is more similar to the lactocyte LC2 
subtype compare to LC1
Previous studies have identified two main epithelial subtypes in human 
breast milk—LC1s and LC2s (42–45). We next set out to characterize 
whether the MFG RNA is more similar to one of these subtypes, 
which might help to better understand the origin of MFG RNA and 
the specific roles of these sub–cell types in milk production.

To achieve this, we analyzed scRNA-seq data generated using the 
10X Genomics platform from 11 milk cells samples in our cohort 

(Fig. 1B, Table 2, and table S3). After filtering, we had 17,000 cells 
that were clustered into nine broad cell-type categories matching 
previous milk scRNA-seq reports (42–45). These cell-type catego-
ries included: (i) six immune cell clusters consisting of T cells, natu-
ral killer (NK) cells, B cells, plasma cells, dendritic cells (DCs), and 
macrophages; (ii) two large luminal epithelial cell clusters LC1 and 
LC2; and (iii) a small dividing epithelial cell (DEC) cluster (Fig. 3A, 
fig. S1, and Table 3). We then used the BisqueRNA package (52), 
which uses scRNA-seq signatures to deconvolve bulk transcrip-
tomes into component cell type proportions as a proxy for cell type 
of origin for the MFG transcripts. First, we generated a reference 
signature of general single cell types found in our scRNA-seq sam-
ples (Fig. 3A; LC1s, LC2s, macrophages and DCs, B cells, T cells, NK 
cells, and plasma cells). Then, we applied this reference signature to 
identify which cell population is more highly represented in the 
MFG bulk RNA-seq data. We found that LC2 cells had the highest 
proportion in 12 of the 14 MFG bulk RNA-seq samples that we 
examined (Fig. 3B). In the two samples for which LC2 did not have 
the highest proportion, the macrophage and DC signatures had 
the highest proportions and LC1 and LC2 had the second high-
est proportions.

We next generated a signature of genes highly expressed in MFG 
relative to milk cells (242 genes and MFG signature), from our bulk 
RNA-seq (Fig. 3C and table S2). We used this signature to character-
ize which cell types could be the source of the unique RNA secreted in 
the MFG. We found that the MFG signature was higher in epithelial 

 (Continued)

Category Overall Low Normal High P value Test

﻿2–6 hours after birth﻿ 1 (3.3) 0 (0.0) 1 (7.1) 0 (0.0) ﻿ ﻿

﻿>24 hours after birth  1 (11.1) 1 (7.1) 0 (0.0) ﻿ ﻿

﻿Milk production 
assessment (%)  

﻿ ﻿ ﻿ ﻿ *** χ2

﻿I feel that I produce 
not enough breast 
milk to meet my 
baby’s needs.﻿

9 (30.0) 9 (100.0) 0 (0.0) 0 (0.0) ﻿ ﻿

﻿I feel that I produce 
normal levels of 
breast milk to meet 
my baby’s needs.﻿

14 (46.7) 0 (0.0) 14 (100.0) 0 (0.0) ﻿ ﻿

﻿I feel that I produce 
too much breast milk 
to meet my baby’s 
needs.﻿

7 (23.3) 0 (0.0) 0 (0.0) 7 (100.0) ﻿ ﻿

﻿My infant is satisfied 
with my own milk. 
(%)  

﻿ ﻿ ﻿ ﻿ *** χ2

﻿Agree strongly﻿ 16 (53.3) 0 (0.0) 10 (71.4) 6 (85.7) ﻿ ﻿

﻿Agree moderately﻿ 3 (10.0) 0 (0.0) 3 (21.4) 0 (0.0) ﻿ ﻿

﻿Agree slightly﻿ 2 (6.7) 1 (11.1) 1 (7.1) 0 (0.0) ﻿ ﻿

﻿Disagree moderately﻿ 3 (10.0) 3 (33.3) 0 (0.0) 0 (0.0) ﻿ ﻿

﻿Disagree strongly﻿ 5 (16.7) 5 (55.6) 0 (0.0) 0 (0.0) ﻿ ﻿

﻿Neither agree nor 
disagree﻿

1 (3.3) 0 0.0) 0 (0.0) 1 (14.3) ﻿ ﻿
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cells and highest in the LC2 cell subset (Fig. 3D). In addition, the 
LC2 subpopulation showed high expression levels for genes as-
sociated with MFG membrane formation and budding (FABP3, 
BTN1A1, XDH, and CIDEA; Fig. 3E) (53) supporting the hypothesis 
that MFG may form primarily in LC2 cells. These results further 
suggest that the MFG transcriptome is more similar to LC2 cells, 
as compared to LC1 cells, but further studies are needed to delin-
eate the different functions or contribution of each cell type to 
milk production.

MFG bulk RNA-seq identifies transcriptional changes 
associated with milk production
We next generated additional bulk RNA-seq from four, seven, and 
three selected samples collected from low, normal, and high produc-
ers (respectively) during postpartum days 62 to 213 (mature milk) to 
analyze whether different levels of milk production were associated 

with MFG gene expression differences. Samples from low and high 
producers were selected to match as much as possible the days post-
partum of normal producers, and baby age was included as a covari-
ate in the differential expression model (Table 2). Following RNA-seq, 
we used DESeq2 for DE analysis between milk production groups, 
sequentially comparing low versus normal and high versus normal 
samples (51). We found that 15 and 65 genes were down-regulated 
between low versus normal and high versus normal, respectively; 7 
and 45 genes were up-regulated between low versus normal and high 
versus normal, respectively (Fig. 4, A and B, and table S4).

One gene that was up-regulated in high compared to normal pro-
ducers, KLF10, has been linked to the regulation of transforming 
growth factor–β signaling (54); disruptions in this pathway could 
affect mammary gland development and lactation (55, 56). GLP1R 
and PPP1R1A were down-regulated in high compared to normal 
producers (Fig. 4A) and have been previously associated with glucose 

Table 2. Samples sequences for different analysis in the study. “y” represents samples that were sequenced in the different assays performed in this study. 

Participant ID Milk production 
group

Days 
postpartum

MFG RNA-seq Cell bulk 
RNA-seq

Cell scRNA-seq Infant stool 
microbiome

maternal stool 
microbiome

ID1024 High 208 y ﻿ ﻿ ﻿ ﻿

ID1025 High 106 y ﻿ y y* y*
ID1026 High 84 y ﻿ y ﻿ ﻿

ID1012 High 469 y y ﻿ ﻿ ﻿

ID1012 High 481 y y ﻿ ﻿ ﻿

ID1024 High 158 ﻿ ﻿ y y* y*
ID1018 Low 46 ﻿ ﻿ ﻿ y y

ID1018 Low 67 y ﻿ ﻿ y ﻿

ID1023 Low 28 ﻿ ﻿ ﻿ y y

ID1023 Low 64 y ﻿ y y y

ID1027 Low 95 ﻿ ﻿ ﻿ y y

ID1028 Low 85 y ﻿ y y y

ID1028 Low 106 ﻿ ﻿ ﻿ y ﻿

ID1029 Low 62 y ﻿ y ﻿ ﻿

ID1030 Low 36 ﻿ ﻿ ﻿ y ﻿

ID1030 Low 99 ﻿ ﻿ y y y

ID1036 Low 62 ﻿ ﻿ ﻿ y y

ID1036 Low 65 ﻿ ﻿ ﻿ y y

ID1037 Low 84 ﻿ ﻿ ﻿ y y

ID1016 Normal 68 y ﻿ y y y

ID1016 Normal 94 y ﻿ ﻿ y y

ID1016 Normal 138 ﻿ ﻿ ﻿ y y

ID1020 Normal 70 y ﻿ y y y

ID1020 Normal 94 y ﻿ ﻿ y y

ID1020 Normal 116 y ﻿ ﻿ y y

ID1020 Normal 213 y ﻿ ﻿ y* y*
VPL131 Normal 68 y ﻿ ﻿ ﻿ ﻿

ID1013 Normal 386 y y ﻿ ﻿ ﻿

ID1014 Normal 139 y y ﻿ ﻿ ﻿

ID1020 Normal 165 ﻿ ﻿ y ﻿ ﻿

ID1033 Normal 61 ﻿ ﻿ y y y

ID1033 Normal 114 ﻿ ﻿ ﻿ y ﻿

*Samples that were not included in the microbiome analysis due to late time postpartum or low number of participants from high production group.
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Fig. 2. Transcriptomic comparison between MFG, milk cells, and nonlactating mammary gland tissue. (A) Volcano plot showing RNA-seq DE genes between milk 
cells (left side) and MFG (right side) as detected by DESeq2 (51). A log-fold change >1 cutoff and BH-adjusted P value< 0.05 was used. (B and C) GO Biological Process 
(GOBP) pathway analysis (48) of DE genes from (A) including pathways up-regulated in milk cells (B) and in MFG (C). (D) Volcano plot of DE genes comparing milk cells 
(right side) and nonlactational breast tissue (left side). (E) Corresponding GOBP pathway analysis of DE genes up in milk cells from (D) (right side). (F) Corresponding GOBP 
pathway analysis of DE genes up in MFG from (G) (right side). (G) Volcano plot of DE genes between MFG (right side) and nonlactational breast tissue (left side). (H) Dot 
plot of the fold change of the DE genes from (D) and (G) showing similarity in gene expression between milk cells and MFG compared to breast tissue (blue) and DE genes 
in cells (red) or MFG (green). Full gene and GOBP lists in table S2. Gene ratio is the ratio of input genes that are annotated in a term (pathway of genes).
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homeostasis and insulin secretion, and their dysregulation may po-
tentially affect lactation as insulin signaling plays an important role 
in secretory differentiation in the mammary gland and in milk pro-
duction (15, 57). In addition, duodenal GLP1R gene expression was 
negatively correlated with milk production efficiency traits in dairy 
cattle (58). Currently, little is known about the role of GLP1R and its 
signaling pathway in milk production. In addition, Perilipin 4 
(PLIN4), a gene associated with lipid accumulation in other tissues 
and with breast cancer (59, 60), was found in higher levels in low 
milk producers (Fig. 4B). Additional genes of interest were cytokine-
inducible Src homology 2–containing (CISH) protein that negative-
ly regulates the Janus kinase–signal transducers and activators of 
transcription 5 signaling pathway (61,  62), and Lysozyme (LYZ) 
(Fig. 4, A and C).

To validate our findings, we extracted MFG RNA from addition-
al milk samples (total n = 39 samples; 7 low, 24 normal, and 8 high), 
and performed quantitative polymerase chain reaction (qPCR) 
analysis on five DE genes between the milk production groups in 
our bulk-RNA analysis (CISH, GLP1R, LYZ, KLF10, and PLIN4). 
We calculated the fold change of each sample from the average of 
the normal group expression levels. We then used the mixed effect 
model to test whether the expression of these genes is significantly 
different between the milk production groups, accounting for mul-
tiple samples from the same individual and the days postpartum 
(different times of sample collection). When controlling for time 
postpartum, PLIN4 and GLP1R gene expression are expected to be 
higher in the low production group compared with normal and to 
high producers (P value < 0.01) (Fig. 4D and table S5). In contrast, 
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KLF10 gene expression is expected to be higher in high producers 
compared to low producers and tends to be higher compared to 
normal producers. We also found that CISH and LYZ expression 
were not significantly different between the groups over time (table S5 
and fig. S2A).

scRNA-seq identifies changes in cell type proportions that 
are associated with milk production and transcriptional 
changes in specific cell populations
We next assessed whether milk production is associated with tran-
scriptional changes in other milk cell types that are not present in 
the MFG transcriptome using scRNA-seq. To determine whether 
milk cell type composition reflects milk production levels, we used 
our scRNA-seq data from 11 cryopreserved milk cell samples col-
lected from our cohort (four low, four normal, and three high pro-
duction). Samples were chosen to match across time postpartum 
and to match the samples used for bulk RNA-seq when possible 
(Table 2). Using the nine clusters as previously shown (Fig. 3A), we 
found high variability in the composition of immune and epithe-
lial cells between samples (Fig. 5A and Table 3); thus, we compared 
the composition of immune and epithelial cells separately. Using 
scCODA (63), a method for differential abundance of cell types, 
we found that the ratio of LC1s to LC2s differs between samples 
from high production and normal production groups, with a larg-
er proportion of LC1 cells in high production [credible effect with 
false discovery rate (FDR)  =  0.05;  Fig.  5B]. While evaluated as 
credible using this analysis, the small sample size in this compari-
son leaves this comparison as a topic for further exploration in 
larger datasets. The low production group also exhibited a higher 
LC1/LC2 ratio compared to the normal group, although this dif-
ference was not statistically significant. Our analysis suggests that 
the proportion of LC2 relative to LC1 in milk does not directly 
correlate with the milk production phenotype, as both aberrant 
production groups displayed elevated LC1 levels. Further studies 
with larger sample sizes are necessary to determine whether the 
LC1/LC2 ratio could serve as a potential indicator of milk produc-
tion dysregulation.

Among the epithelial cells, we identified eight subclusters, in-
cluding four LC1 subtypes (named LC1, A to D), three LC2 sub-
types (named LC2, A to C), and a small population of dividing cells 
(DEC) (fig.  S3). When comparing the proportions of these sub-
populations, we found that the proportion of LC2-C cells was high-
er in normal suppliers compared to the low or high groups (credible 
effect with FDR = 0.05; Fig. 5C). No other changes were observed 
for the epithelial cell type proportions. Since the functions of the 
different milk cell subtypes are unknown, we decided to further 
characterize whether the changes in milk cell LC2-C proportions 
are reflected in changes in milk composition. On the basis of our 
previous finding of similarities between MFG and LC2 cells, we 
measured total milk fat content using the creamatocrit device 
(64, 65) in the 40 milk samples from our cohort, including the sam-
ples used for the scRNA-seq assay. There was no significant differ-
ence in fat content (gram per liter) in samples provided by normal 
producers compared to low producers (Fig. 5D). Among samples 
with matched scRNA-seq data, fat content was positively correlated 
with LC2-C cell proportions (Spearman P  ≤  0.05;  Fig.  5E). Our 
results identified higher proportions of LC2-C epithelial cells in 
normal milk suppliers, which correlated with increased milk fat 
content in these samples. In addition, we found that LC1-Golgi/
long noncoding RNA (lncRNA) was negatively associated with fat 
content (Spearman P < 0.02). No other cells types were correlated 
with milk fat content. To better understand the function of milk 
epithelial cell types, this correlative relationship between LC2-C 
and that LC1-Golgi/lncRNA cells and milk fat content should be 
further studied in future work.

Differential expression analysis between production groups 
within each of the epithelial cell clusters found several genes con-
sistent with those identified in the bulk RNA-seq (table  S6). For 
example, we identified up-regulation in LC2 cells in high producers 
of the LYZ gene that encodes lysozyme, which is an antibacterial 
bioactive component found in human milk (Fig. 5F; all BH-adjusted 
P ≤ 0.05) (66). Several genes were increased in high suppliers in 
the LC2 cluster but not in the MFG transcriptome comparisons, 
including milk component synthesis-related genes (AZGP1: zinc 

Table 3. scRNA-seq cell type proportions per human milk sample. 

Milk production Low Normal High 

Cell type Proportion per 
sample

SD Proportion per 
sample

SD Proportion per 
sample

SD Cluster marker 
genes

T cells 0.052 0.032 0.095 0.069 0.056 0.072 ETS1 CD3E

Natural killer cells 0.008 0.006 0.025 0.021 0.01 0.014 NR4A2

 B cells 0.013 0.011 0.005 0.002 0.012 0.015 MS4A1, CD79A, 
BANK1

 Plasma cells 0.003 0.004 0.002 0.002 0.0 0.0 JCHAIN, IRF4

Dendritic cells 0.047 0.018 0.041 0.034 0.08 0.116 CSF2RA

 Macrophages 0.194 0.124 0.155 0.145 0.066 0.069 CD68

LC1 0.167 0.071 0.094 0.04 0.288 0.12 CLDN4, CLDN3, 
NECTIN4

LC2 0.513 0.117 0.571 0.236 0.486 0.208 CIDEA, FOLR1

Dividing epithelial 
cells

0.003 0.002 0.013 0.013 0.001 0.001 TUBB4B, STMN1
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binding and lipid metabolism; B4GALT1: lactose synthesis; NUCB2: 
calcium level maintenance; KLK6: serene protease; and GC: vitamin D 
binding protein) as well as genes related to mammary gland struc-
ture (PERP: desmosomes; ODAM: epithelial cell proliferation and 
wound healing; and CEL: milk synthesis related glycoprotein; 
Fig. 5F). In the same LC2 cluster, several genes were increased in 
both high and low suppliers compared to normal suppliers, includ-
ing genes known to be related to milk synthesis (LPO, NAAA, and 
NUCA1; Fig. 5F).

Immune cell subclustering identified nine clusters including 
three myeloid and six lymphoid cell clusters (fig. S4). Most of the 
immune cells were myeloid cells in each sample (fig. S4B). Of the 
myeloid cells, we identified a cluster of macrophages, DCs, and milk 
macrophages, a macrophage subset that also expresses milk produc-
tion genes such as CSN3, and has been described in previous human 

milk scRNA-seq studies (43) and murine mammary gland studies 
(67,  68). In the lymphoid cells, we identified clusters of NK cells, 
gamma delta (GD) T cells, CD8+ T cells, CD4+ T cells, B cells, and 
plasma cells using canonical marker genes (fig. S4).

We next looked for differences in immune cells related to milk 
production, focusing on differences within myeloid cells as they are 
the most abundant immune cells type present in human milk. In 
immune cells, we found an increase in DCs in individuals with high 
milk production compared to normal or low suppliers (credible ef-
fect with FDR = 0.05; Fig. 6A and fig. S4). In addition, we found a 
trend of increased macrophage proportion in low producers. These 
cells also showed increased expression of genes related to TNF-α 
signaling via NFKB and genes related to the production of cytokines 
and inflammation, such as IL1B, CCL4, CXCL3, and CXCL8 (Fig. 6B 
and table S6). We scored the macrophage cells on the full TNF-α 
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signaling via the nuclear factor κB (NF-κB) hallmark pathway and 
observed a trend of increased gene set score in three of four indi-
viduals with low milk production compared to normal- or high-
milk producers (ANOVA, P ≤ 0.1; Fig. 6C).

Effect of milk production on the infant’s microbiome
To investigate whether maternal milk production is affected by the 
composition of the maternal microbiome, or affects the infant gut 
microbiome, we collected stool samples from mothers and their in-
fants. We analyzed 20 stool samples from 10 infants of participants 
with low and normal milk production and 16 samples from their 10 
mothers collected at the time of milk collection. Samples were col-
lected at multiple time points from 28 to 150 days postpartum 
(Table 2), and before the introduction of complementary foods to the 

infant diet. We conducted metagenomic sequencing on all samples 
and analyzed the data using a unique MetaPhlAn database (69). As 
only two individuals with high milk production provided stool sam-
ples, these samples were not included in the group-wise comparisons.

We next set out to characterize the infant microbiome for dif-
ferences between the milk production groups. We used principal 
coordinate analysis (PcoA) and k-means clustering (k = 3) to char-
acterize the dominant species in the infant gut microbial popula-
tion in our cohort. We found three main clusters: (i) samples 
dominated by Bifidobacterium breve (B. breve), (ii) samples domi-
nated by Bifidobacterium longum subsp. infantis (BL. infantis), and 
(iii) samples dominated by other bacteria that are typically less common 
in infants. Samples dominated by B. breve or BL. infantis clustered sep-
arately from samples dominated by other bacteria, revealing a distinct 
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microbial population (Fig. 7A). This separation can be quantified by 
a lower Shannon diversity (Fig. 7A; point size) in the samples domi-
nated by B. breve and BL. Infantis. One possible driver of this separa-
tion is that, when B. breve and BL. infantis are dominant, they inhibit 
or interfere with successful growth of other bacteria (69).

Samples from infants of mothers with low and normal milk 
production were found in all clusters and there was no significant 
difference in the abundance of any bacteria species between those 
groups (fig.  S5). As expected, infant Shannon diversity index was 
lower than the maternal index (Fig. 7B). We found no difference in 
the maternal microbiome diversity or genus-level composition be-
tween individuals in different milk production groups in our cohort 
(using linear association models, while controlling for multiple 
samples from the same individual; fig. S5). The Shannon diversity 
index of infants nursed by individuals with low milk production was 
slightly higher than that of those with normal milk production, but 
this difference was not statistically significant (P value  =  0.084) 
(Fig. 7B).

Since infants of low milk producers were more frequently supple-
mented with infant formula compared to those of normal producers 

(Fig. 7B; indicated by point color), we tested whether infant formula 
supplementation affected the microbiome diversity. We found that 
exclusively breastfed infants had lower Shannon diversity compared 
to those who were breastfed but also supplemented with infant for-
mula (P value = 0.023; fig. S5). In summary, this analysis showed a 
trend of higher microbiome diversity in infants nursed by low com-
pared to normal milk producers. This was likely driven by infants 
receiving formula supplementation (70), who constitute most in the 
low producers’ group, which was correlated with a more diverse mi-
crobiome compared to exclusively breastfed infants.

DISCUSSION
In this study, we present a comprehensive catalog of the transcrip-
tomic and cellular changes occurring during lactation. Our findings 
highlight the potential of MFG RNA as a biomarker for epithelial 
cells, as it largely reflects the transcriptomic profile of these cells. 
Notably, we observed that MFG RNA contains very few unique 
transcripts when compared to the RNA profile of milk cells, which 
are commonly used as a representative of the mammary gland 
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scCODA differential abundance.
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during lactation. This suggests that MFG RNA primarily originates 
from mammary epithelial cells and may serve as a useful tool for 
studying epithelial-specific gene expression in lactation research. 
Our analysis also revealed that MFG RNA is not enriched in 
immune-related transcripts, indicating a low contribution from im-
mune cells. This distinction is particularly important for studies fo-
cusing on immune function during lactation, as MFG RNA does not 
provide a reliable representation of immune cell activity. Instead, 
researchers investigating immunological aspects of lactation may 
find milk cells to be a more suitable source of RNA.

In addition, this study analyzes changes in transcriptomic in 
MFG and milk cells collected from fresh milk samples from indi-
viduals with low, normal, and high human milk production. Previ-
ous studies that examined changes in the milk cell transcriptome of 
low milk producers were limited by confounding from a higher BMI 
among individuals with low milk production compared to the nor-
mal production group (13,  14). High BMI may lead to greater 
changes in milk production that are dependent on systemic inflam-
matory state as well as local inflammation in the mammary gland. 
We observed a trend of increased TNF-α signaling in macrophage 
cells in low producers in our scRNA-seq analysis, but this pathway 
was not different in our bulk RNA-seq analysis in MFG. In our co-
hort, there was no significant difference in BMI between the study 
groups, which may explain the smaller differences in the milk in-
flammatory markers between our study groups compared to previ-
ous studies (71). Another study that used frozen milk samples from 
eight participants found no differences in gene expression between 
individuals with low and high milk production (72). This might be 

due to the use of frozen milk samples, which is the cause fast degra-
dation of RNA and reduce significantly the RNA integrity score. The 
same study reported that individuals with low milk production 
(n = 4) have more depression and anxiety compared to individuals 
with high production (n = 4) (72); however, depression did not dif-
fer between the groups in our study and we did not assess anxiety. 
Since breastfeeding is a multifactorial process that depends on many 
environmental and internal factors (73), it will be essential in the 
future to quantify differences in these confounders within and be-
tween the study groups.

Our analysis provides important insights into changes in the 
transcriptional signature and cell type composition of the mamma-
ry gland under aberrant milk production. We found that most genes 
that are required for milk production, including milk proteins (ca-
seins and lactalbumin) and milk fat secretion, are not DE between 
the milk production groups and that the conserved cellular milk 
production machinery functions equivalently across all groups. Our 
findings also identify gene targets that should be further studied to 
understand their role in human milk production.

Our study examinedi milk cell population proportions in sam-
ples collected from individuals with low, normal, and high milk 
production. In terms of total cell proportion, we did not observe 
any significant differences between our study groups, possibly be-
cause of the high variability of immune cells in milk samples and 
the small sample size in our study. Focusing on epithelial cells alone, 
the LC2-C subcluster (high KRT) was depleted in low and high milk 
production groups. Along with the correlation between milk fat 
concentrations and LC2-C cells percentages, these results suggest a 

−0.50

−0.25

0.00

0.25

−0.50 −0.25 0.00 0.25

PCo1

P
C

o2

Dominant strain
Bifidobacterium_adolescentis
Bifidobacterium_bifidum
Bifidobacterium_breve
Bifidobacterium_pseudocatenulatum
Bifidobacterium_subsp.infantis
Bifidobacterium_subsp.longum
Clostridium_paraputrificum
Ruminococcus_gnavus

Supply
Low
Normal

Shannon index
0.5
1.0
1.5
2.0
2.5

Baby Mother

Low Normal Low Normal

1

2

3

4

Supply

S
ha

nn
on

 in
de

x

Food
BF + formula
exclusively BF
Formula followed
by exclusively BF
Not reported

Type
Baby
Mother

A B

Fig. 7. Characterization of the maternal and infant gut microbiome from different milk production groups. (A) Infant gut microbiome samples were grouped using 
k-means clustering with k = 3. The samples are color-coded by their dominant bacteria, with point shapes indicating maternal milk supply (circles for low and triangles for 
normal milk production) and point sizes representing the Shannon diversity of each sample. (B) Shannon diversity in infant and maternal stool samples from this cohort 
(including only samples up to 150 days) is shown. Points are colored according to the infant feeding type at the time of sampling.



Golan et al., Sci. Adv. 11, eadr7174 (2025)     10 September 2025

S c i e n c e  A d v a n c e s  |  R e s e ar  c h  A r t i c l e

14 of 18

role for LC2-C cells in the fat content in milk and should be further 
characterized. In immune cells, DCs were increased in the high 
production group. The DC population was previously shown to in-
crease during involution in mice (74); our results suggest that high 
milk production might lead to similar cellular changes as in invo-
lution due to the constant attempt to reduce milk production in 
these individuals.

Individuals with low milk production are usually using breast 
milk pumps to try and increase their milk supply and are often 
recommended to add infant formula to their infant diet. These dif-
ferent feeding behaviors might also affect the infant microbiome 
(75), and we therefore aimed to identify whether impaired milk 
production is associated with changes in the infant microbiome. 
Our findings revealed no differences in microbiome diversity or 
species composition between mothers and infants with low versus 
normal milk production. Our results align with earlier studies from 
larger cohorts that demonstrated that combining formula feeding 
with breastfeeding tends to increase microbial diversity compared 
to exclusive breastfeeding; however, partial and exclusively breast-
feeding reduces microbial diversity compared to exclusively for-
mula feeding (70). These findings further support the messaging 
that individuals with low milk production should be encouraged 
to continue partial breastfeeding to support healthy infant micro-
biome development.

Our study has some important limitations. This is a small pro-
spective study, and samples were collected at a relatively late stage in 
lactation because of the need for lactation consultants to examined 
each participant before recruitment. Furthermore, larger studies 
that follow up on lactation in the participants from childbirth 
through the mature milk stage are needed to better understand the 
changes occurring just after birth and their effect on establishing 
lactation and breastfeeding outcomes. In addition to the changes de-
tected in the milk cell populations, it is possible that there are other 
changes in cell populations that are not shedding into milk (basal 
cells and stromal cells) (44), which affect the ability individuals to 
produce or secrete milk. Moreover, hormonal regulation and other 
upstream factors may also play a role in milk production (62); these 
factors were not examined in our analysis and cannot be detected 
using milk cells. Our microbiome data are limited because they do 
not contain samples of individuals with high milk production, and 
by the small sample size of the low and normal producers.

In summary, our study provides a unique database of gene ex-
pression during lactation and that can be used to find specific genes 
that might promote or inhibit milk production in cases of aberrant 
milk production. However, the specific role that these genes play in 
human milk production needs further research. Our study will pave 
the way for more research in the area of milk production using ge-
nomic characterization, and future studies will assist in our under-
standing, diagnosis, and treatment of breastfeeding difficulties.

MATERIALS AND METHODS
Cohort
Participant cohort and data collection
Milk samples for this study were collected in two independent co-
horts and the institutional review board of the UCSF, approved 
these studies (UCSF Milk production study #19-29297 and COVID-
19 Vaccine in Pregnancy and Lactation (COVIPAL) cohort study 
#20-32077). Written informed consent was obtained from all study 

volunteers. The COVIPAL samples were collected and stored as pre-
viously described (76) and were used as additional samples for fat 
layer RNA-seq.

Clinical data
Data collection
Data were collected through an online questionnaire that was sent 
to participants via email using REDCap. To assess PIMS, mothers in 
both cohorts were asked to report whether they feel that they pro-
duce too much/normal/not enough breast milk to meet their in-
fant’s needs. In the UCSF Milk supply study, mothers were also 
assessed by lactation consultants to address any obvious reason for 
low/high milk production (table S1) and were also asked whether 
their infants are satisfied with the volume of milk they produced.
Statistical analysis
Survey data were exported from RedCap and analyzed on R version 
4.3.2 (2023-10-31) using the CompareGroups (77) function to gen-
erate Table 1.

Milk sample collection and processing
Fresh human milk samples were self-collected by participants into 
sterile containers using Ameda Dual HygieniKit Milk Collection 
System provided to the participants. For each collection, the moth-
ers were instructed to use a new/autoclaved sterile kit, wash hands 
before pumping, and empty both breasts. Ten to thirty milliliters of 
milk were collected from each breast for analysis. Milk from each 
breast was processed separately. Mothers who prefer using differ-
ent pumps were asked to sterilize the pump parts at home and 
document it. Samples were transported on ice from the partici-
pant’s home to the laboratory for processing. Milk samples were 
collected and processed as soon as possible and no longer than 
2 hours after expression by the study staff. In the laboratory, whole 
milk was aliquoted, and the rest was centrifuged at 800g for 20 min 
in 4°C to pellet the cells and separate the fat layer. Fat layer was 
removed using a sterile spoon and mixed with RLT lysis buffer 
or TRIzol for RNA extraction using the RNeasy kit (Qiagen). Su-
pernatant was aspirated and aliquoted, and milk cells pellet was 
resuspended in phosphate-buffered saline (PBS) with 0.04 to 1% 
bovine serum albumin (BSA). Cells were washed once or twice and 
were analyzed immediately or cryopreserved using CryoStor CS10 
freezing media (STEMCELL Technologies). For milk fat content, 
frozen milk samples were thawed to room temperature and were 
gently mixed to homogenize before measured. Milk fat content was 
measured using Creamatocrit Plus (EKF Diagnostics). One outlier 
sample that had fat levels above the normal range expected for ma-
ture human milk (8 g/dl) (78) was excluded from further analysis 
related to fat composition.

Bulk RNA-seq
Total RNA samples from milk fat layer of milk cells were sequence 
at Novogene Co. ltd. Libraries were generated using the SMARTetr 
V2 or V3 kits. The sequencing was performed using a paired end 
150–base pair (bp) strategy on the Illumina platform (Illumina 
NovaSeq  6000). Sequencing reads were aligned to reference hu-
man genome hg38 using STAR aligner. Normal breast RNA-seq 
data were downloaded from GEO (PRJNA292118) (49). Read 
counts were normalized to transcripts per kilobase million. Qual-
ity control matrixes and details about sequence reads/samples are 
in table S8.
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Bulk differential analysis
Differential expression between paired milk cell and MFG tran-
scriptional data was performed using DESeq2 (51) with designs 
“~ subject+layer” for milk cells versus MFGs, “~tissue_origin” for cells 
or MFGs versus breast tissue, and “~baby age + milk_supply” for 
milk supply. For milk cells versus MFGs, genes with adjusted P value 
less than 0.01 and log2foldchange greater than 2 or less than −2 were 
included in enrichment analyses. For milk supply comparisons, 
genes with adjusted P value less than 0.05 and log2foldchange great-
er than 1 or less than −1 were included in enrichment analyses.

Bulk gene set enrichment analyses
GO enrichment was run using the clusterProfiler package in R with 
function enrichGO using biological processes ontologies with BH P 
value correction for multiple tests and genes expressed in dataset as 
background followed by the simplify function to remove redundant 
GO hits (48).

qPCR for gene expression
MFG were preserve in RLT-buffer or RNAlater and used for RNA 
isolation using RNeasy kit (Qiagen, #74134). Reverse transcription 
was performed with 1 μg of total RNA using qScript cDNA Synthe-
sis Kit (Quantabio, 95047) following the manufacturer’s protocol. 
Quantitative reverse transcription PCR (qRT-PCR) was performed 
on QuantStudio 6 Real Time PCR system (Thermo Fisher Scientific) 
using PerfeCTa SYBR Green FastMix, Low ROX (QuantaBio, 95074). 
Statistical analysis was performed using ddct method with Gapdh 
primers as control (see primer sequences in table S7). Gene expres-
sion results were generated using mean of all participants with nor-
mal milk production as the reference value.

Linear mixed effect model was generated in R using the lmerTest 
package and the following formula: gene, ~ Supply_group + Days_
pp + (1 | “Study ID”). The emmeans function was used for post hoc 
analysis to compare the means of the difference milk production 
groups using Tukey methods for comparing a family of three esti-
mates, with degree-of-freedom method: Kenward-roger (results in 
table 5S).

Single-cell RNA-seq
Cryopreserved cells were thawed and washed with 10 ml of Mammary 
Epithelial Cell Growth Medium (PormoCell) and later with 2 ml of 
PBS + 1 to 2% BSA. Live cells were counted using acridine orange/
propidium iodide staining using DeNovix Celldrop cell counter. 
Twenty-five thousand cells from each sample were loaded on the 
10X single cell chip. Chromium Next GEM Single Cell 3′ Kit v3.1 
was used following the manufacturers’ protocol.

scRNA-seq analysis
Alignment
Samples were aligned to hg38 using 10x Genomics CellRanger v6.1.2.
Preprocessing
Using the Scanpy package v1.9.6, data were filtered to remove cells 
with fewer than 200 genes and genes expressed in fewer than 10 
genes (79). Expression was normalized to 1 × 104 total counts per 
cell, and the log base 2 + 1 was taken.
Clustering analysis
Following a standard Scanpy pipeline (79), highly variable genes were 
selected using the scanpy highly_variable_genes function with batch 
key = sample. Twenty-six principal components and 10 neighbors 

were used to construct the neighborhood graph. Clustering was per-
formed iteratively beginning with identification of broad immune 
and epithelial cell clusters using Leiden clustering followed by rese-
lection of variable genes on epithelial and immune subsets then fol-
lowed by further subclustering on each broad cell type: T cells, B 
cells, myeloid cells, LC1s, and LC2s. In each subclustering stage, 
clusters were identified as doublet cells and removed if they con-
tained marker genes from distinct lineages. During subclustering, 
Harmony was used for batch integration (80). Cell type labeling was 
done on the basis of comparison of marker genes to those identified 
in prior human milk cell datasets (42–44).
Differential expression
To define marker genes for each subcluster as genes that identify 
cells in that cluster regardless of their sample of origin as well as 
genes specific to milk production level groups that are reproducible 
across individual samples, we used pseudobulk differential expres-
sion analysis as previously described (43, 81–83). Briefly, we gener-
ated pseudobulk counts for the cells in each subcluster in each 
sample by summing the raw counts for each group and used these to 
identify DE genes between subclusters and between conditions in a 
sample aware manner. We removed subcluster/sample pools with 
fewer than 10 cells from these comparisons. Using the DESeq2 
package (51), we performed differential expression analyses using 
the Wald statistical test with the design formula “~ donor + celltype” 
to identify cell type marker genes and “~ donor + baby age + Milk 
supply” to identify milk supply differential genes for each cluster 
(51). Marker genes were then filtered for adjusted P value <0.05, 
log2foldchange > 0.4, and proportion of cells in cluster expressing 
the gene >0.4. Milk production differential genes were filtered for 
adjusted P value <0.05 and proportion of cells in cluster expressing 
the gene >0.1 full differential gene lists are available in tables S1 to S4.
Gene set enrichment analysis
Functional enrichment analysis on these differential genes was per-
formed using Enrichr using the gseapy package with the gene set 
GO_Biological_Processes_2023 (84, 85). For the macrophage clus-
ter, TNF-α signaling via NF-κB score was calculated using the full 
list of genes with the scanpy function “score_genes.”
Statistical analysis of scRNA-seq results
The scCODA package was used to test statistically differentially 
abundant cell type proportions in the scRNA-seq data between low, 
normal, and high production groups (63). This approach compares 
the ratio of cell type abundance within a sample to a reference cell 
type. Since this study did not include a clear cell type whose abun-
dance should be expected to stay stable, the scCODA test was run 
iteratively with each cell type as the reference cell type, and a cell 
type was considered differentially abundant if the scCODA test 
identified it as significantly differential with more than half of the 
other cell types as the reference. This test was run on the cell type 
composition across all cell clusters as well as within just the immune 
cells and just the epithelial cell subclusters separately. All RNA qual-
ity control matrixes for the bulk and scRNA sequence analysis are 
in table S8.

Stool samples collection
Maternal and infant stool samples were collected on the day before, 
on the day of, or the day after milk sample collection. Maternal stool 
samples were collected using a Feces Catcher (Zymo Research, 
R1101-1-10) following the manufacturer’s instructions and then im-
mediately scooped into DNA/RNA Shield fecal collection tubes 
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(Zymo Research, R1101-E). Infant stool samples were collected di-
rectly from the diaper (with mothers instructed not to apply cream 
at the time of sample collection) immediately after bowel movement 
into DNA/RNA Shield fecal collection tubes (Zymo Research, R1101-E). 
Samples were brought to the laboratory within 3 hours of collection 
or kept frozen in a household freezer if collection was scheduled for 
a later time point. Samples were shipped to the laboratory on ice and 
stored at −80°C until analysis.

DNA extraction
Stool samples underwent DNA extraction performed by the 
Microbial Genomics Core at the UCSF, using a modified cetyl-
trimethylammonium bromide (CTAB) buffer–based protocol as 
described in a published article (86). Briefly, each frozen stool pel-
let was suspended in 500  μl of 5% CTAB extraction buffer in a 
Lysing Matrix E tube (MP Biomedicals) by vortex and incubating 
at 65°C for 15 min. Then, 500 μl of phenol:chloroform:isoamyl al-
cohol (25:24:1) was added, followed by bead-beating at 5.5 m/s for 
30 s and centrifugation at 16,000g for 5 min at 4°C. The aqueous 
phase (~400 μl) was transferred to a new 2-ml Eppendorf tube, and 
the extraction was repeated with an additional 400 μl of 5% CTAB 
buffer, yielding ~800  μl from repeated extractions. Chloroform 
was then added in equal volume, mixed, and centrifuged (16,000g 
for 5 min). The resulting aqueous phase (~500 μl) was combined 
with 2 volumes of 30% polyethylene glycol/NaCl solution and 
stored at 4°C overnight to precipitate DNA. Samples were then 
centrifuged (3000g for 60 min), washed twice with ice-cold 70% 
ethanol, and resuspended in 100  μl of sterile water. DNA from 
each sample was quantified using the Qubit 2.0 Fluorometer with 
the double-stranded DNA (dsDNA) BR Assay Kit (Life Technolo-
gies, #Q32853).

Shotgun metagenomic library preparation
Shotgun metagenomic DNA library preparation was performed us-
ing the Illumina DNA Prep Kit (Illumina, #20060059) according to 
the manufacturer’s instructions. A total of 150 ng of input DNA 
from each sample was used for library preparation, which involved 
enzymatic fragmentation (tagmentation), index-adapter ligation, 
and amplification. The Illumina libraries were quantified using the 
Qubit 2.0 Fluorometer with the dsDNA High Sensitivity Assay Kit 
(Life Technologies, #Q32854) and pooled at equal molar concentra-
tions. The final pooled libraries were submitted for sequencing at 
the Center for Advanced Technology at UCSF, where they were se-
quenced using the Illumina NovaSeq 6000 in a 2 × 150–bp paired-
end run protocol.

Metagenomic analysis
Host reads were removed using an in-house pipeline by aligning reads 
to the human genome by Bowtie2 (2.4.5-1) (87). Samples were filtered 
and trimmed for Nextera adaptors using fastq-mcf, ea-utils (1.05) 
(88). Taxonomic profiling was done using MetaPhlAn4 (89) with a 
custom database that allows quantification of B. longum subspe-
cies (69). Further analysis was done using an in-house R (4.2.2) 
script using dplyr (1.1.2) (90), tidyr (1.3.0) (91), and tidyverse 
(2.0.0) (92). Plots were created using ggplot2 (3.4.2) (93), colors 
were used from RColorBrewer (1.1-3) (94) and pals (95) (1.7). Alpha 
and beta diversity were calculated using “diversity” (Shannon index) 
and “vegdist” (Bray-Curtis dissimilarity) from the vegan (2.6-4) (96) 
package, and the PcoA was created using the ape (5.7-1) (97) package. 

Independent t test was performed to test between groups when 
mentioned using the R function “t.test.” In addition, the “Maaslin2” 
(98) R package was used to perform linear models to find associa-
tions between breast milk supply and species in the infant gut. The 
individual was set as a random factor to account for the effect of 
each mother-infant pair.

Supplementary Materials
The PDF file includes:
Figs. S1 to S5
Legends for tables S1 to S8

Other Supplementary Material for this manuscript includes the following:
Tables S1 to S8
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